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ABSTRACT

In this paper, the design of training signals for channel estima-
tion in massive multiple-input multiple-output (MIMO) sys-
tems is considered. Under a stationary, block Gauss-Markov
channel model, a method for optimal pilot beam pattern de-
sign for enhanced channel estimation is proposed, exploit-
ing both the properties of Kalman filtering and the spatio-
temporal channel correlation. First, pilot beam pattern design
is considered under the assumption of orthogonal beam pat-
terns within a block. The orthogonality assumption is subse-
quently relaxed and the design problem is solved via a greedy
approach. Numerical results show the efficacy of the pro-
posed algorithm.

Index Terms— Channel estimation, Kalman filtering,
Gauss-Markov model, massive MIMO.

1. INTRODUCTION

MIMO systems using very large transmit antenna arrays, so
called massive MIMO systems, have drawn interest because
of their ability to achieve high spectral efficiency [3, 4]. Based
on the law of large numbers, massive MIMO systems can
alleviate the effect of thermal noise and fast channel fading
plus interference, and an energy efficient system can be real-
ized with cheap, low-power amplifiers for each antenna [3].
However, the benefits of massive MIMO in practical systems
are limited by channel estimation accuracy [5]. In particular,
when full frequency reuse across neighboring cells is adopted,
imperfect channel estimation severely degrades performance,
a condition called pilot contamination [2]. Further, the over-
head required for channel estimation in massive MIMO can
become overwhelming since the available training resources
are limited by the channel coherence time and/or the amount
of interference induced by neighboring cells.

To tackle the challenge of channel estimation, most prior
work is based on time-division duplex (TDD) systems and
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sion to the MIMO case with power allocation and to a block-fading channel
model. However, the block-fading case was handled with the orthogonality
assumption for the pilot sequence for each transmission slot. In this paper, the
sequential design in [2] is extended by relaxing the orthogonality condition
on the pilot signals within a training period.

relies on channel reciprocity under the assumption of time-
invariant channels within the coherence time and reciprocity
calibration [3, 4, 6]. However, frequency-division duplex
(FDD) systems are employed in most current wireless cellu-
lar systems, and in this case the problem of channel estimation
becomes more challenging because MIMO channel sound-
ing requires substantial overhead that scales with the number
of antennas. Recently, there has been some work on chan-
nel estimation and channel state information (CSI) feedback
techniques for FDD massive MIMO [7, 8, 9].

In this paper, we consider the problem of pilot beam de-
sign for downlink channel estimation in FDD massive MIMO
systems, where the number of symbol times for channel esti-
mation within a channel coherence time is typically much less
than the number of transmit antennas. To design an efficient
sequence of pilot beam patterns, we exploit the underlying
channel statistics in massive MIMO such as channel temporal
dynamics [10, 11], channel spatial correlation [12, 13], and
the structure of error covariance matrices associated with op-
timal Kalman filtering. We develop a low-complexity pilot
beam pattern design method that sequentially minimizes the
channel estimation mean square error (MSE) at each training
instant.

2. SYSTEM MODEL

2.1. System Setup

We consider a massive MIMO system with Nt transmit anten-
nas and a single receive antenna (Nt ≫ 1) over flat Rayleigh-
fading channels. The received signal at the k-th symbol time
is given by

yk = hH
k sk + wk, k = 1, 2, . . . (1)

where sk is the Nt × 1 transmitted symbol vector, hk is the
Nt × 1 MISO channel vector, and wk is a zero-mean inde-
pendent and identically distributed (i.i.d.) complex Gaussian
noise with covariance σ2

w. We assume slotted transmission
with M consecutive symbols for one slot composed of a pilot
transmission period of Mp symbols and a data transmission
period of Md symbols (M = Mp +Md).

We assume that the channel is block-fading, i.e., the chan-
nel remains constant during each transmission slot, i.e., hk =
hl for k = lM + m, l = 0, 1, 2, · · · , and 1 ≤ m ≤ M .
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Furthermore, for the channel temporal dynamic across slots,
we consider a state-space model for a first-order stationary
Gauss-Markov process [14], given by

hl+1 = ahl +
√

1− a2bl, (2)

that satisfies the Lyapunov equation Rh = a2Rh + (1 −
a2)Rb and Rh = E{hlh

H
l } = Rb = E{blb

H
l } for all

l, where a is the temporal fading correlation coefficient, bl is
a zero-mean and temporally independent plant Gaussian vec-
tor, and l is the slot index. Since the channel statistics can be
estimated [15, 16], we shall assume that a and Rh are known.

It was observed in [2] that pilot power allocation derived
from Kalman filtering is beneficial especially for low SNR
regime. Thus, we here consider equal power allocation for
the pilot beam pattern at each training symbol time.

2.2. Channel Estimation

We focus on minimum mean square error (MMSE) chan-
nel estimation based on the current and all previous re-

ceived pilot signals given by ĥl|l = E{hl|y(l)p }, where

y(l)p = {yk′ |k′ ≤ lM + Mp, k′ ∈ Ip} and Ip = {k =

lM +m|l = 0, 1, · · · ; 1 ≤ m ≤ Mp}. Here, y(l)p denotes all
received pilot signals up to the l-th training period. During
a training period, a sequence of pilot beam vector {sk} is
transmitted for channel estimation. During a data transmis-
sion period, the base station transmits unknown data symbols
with transmit beamforming based on the estimated channel.

The received signal model (1) for the l-th training period
can be rewritten in vector form as

yl = SH
l hl +wl, (3)

where yl = [ylM+1, . . . , ylM+Mp
]T and Sl = [slM+1 · · ·

slM+Mp
]. Note that (2) and (3) form a state-space model, and

optimal channel estimation is provided by Kalman filtering
[17]. During a training period, a measurement update step is
available due to the known pilot beam pattern, given by [17]

ĥl|l = ĥl|l−1 +Kl(yl − SH
l ĥl|l−1), (4)

Pl|l = Pl|l−1 −KlS
H
l Pl|l−1, (5)

where Kl = Pl|l−1Sl(SH
l Pl|l−1Sl + σ2

wIMp
)−1 and (Pl|l,

Pl|l−1) are the estimation and prediction error covariance ma-
trices, respectively, defined as

Pl|l′ = E
{(

hl − ĥl|l′
)(

hl − ĥl|l′
)H |y(l

′)
p

}

(6)

ĥ0|−1 = 0 and P0|−1 = Rh, (7)

where ĥl|l′ = E{hl|y
(l′)
p } with the initial condition (7).

During the data transmission period, unknown data sym-
bols are transmitted with transmit beamforming based on the
current channel estimate hl|l. The channel after the data trans-
mission period is predicted for the next slot as [17]

ĥl+1|l = aĥl|l and Pl+1|l = a2Pl|l + (1− a2)Rh. (8)

3. THE PROPOSED PILOT BEAM PATTERN

METHOD: GREEDY SEQUENTIAL DESIGN

In this section, we propose a pilot beam pattern design method
that minimizes the channel estimation MSE extracted from
Kalman filtering in Section 2.2.

3.1. Orthogonal Sequential Design (OSD)

As mentioned in [2], an approach such as dynamic program-
ming for the joint design of {Sl, l = 0, 1, 2, · · · } is difficult
due to the intertwined structure of the MSE extracted from
the Kalman recursion. Hence, we adopt a greedy sequential
approach to minimize the current MSE tr(Pl|l) at each block
time l. Since a, Rh, Pl|l−1, and Sl′ , l′ < l, are given at
block time l, the greedy sequential design problem is stated
as follows.

Problem 1 For each slot time l starting from 0, given Sl′ for

all pilot symbol time l′ < l, design Sl such that

min
Sl

tr
(

Pl|l

)

, s.t. ∥slM+m∥2 = ρp, m = 1, · · · ,Mp. (9)

Problem 1 itself does not yield a closed-form solution, but
when we impose the following constraint on Sl

(C.1) SH
l Sl = ρpIMp

,

the problem with this additional constraint yields a very nice
solution, as given in the following proposition.

Proposition 1 [2] Given all previous pilot signals Sl′ (l′ <
l), under the condition (C.1) the pilot beam signal Sl at the

l-th training period minimizing tr(Pl|l) is given by a prop-

erly scaled version of the Mp dominant eigenvectors of the

Kalman prediction error covariance matrix Pl|l−1 for the l-
th training period.

The main difference between the above result exploiting
the channel temporal correlation and the existing result for
the i.i.d. block-fading result in [18] is as follows. While
the Mp dominant eigenvectors of Rh are used for training in
the i.i.d. block-fading case [18], the Mp dominant eigenvec-
tors of the Kalman prediction error covariance matrix Pl|l−1

should be used for training in the Gauss-Markov block-fading
case. To obtain the optimal Sl, we need to perform an eigen-
decomposition (ED) of Pl|l−1 at each slot, and this can be
computationally expensive in massive MIMO systems (Nt ≫
1). However, it was shown that all Kalman prediction error
covariance matrices combined with the orthogonal pilot beam
pattern design have the same set of eigenvectors with Rh [2].
This is an important practical implication in that the base sta-
tion sends pilot beam vectors Sl chosen from a fixed set of
pilot beam patterns (the eigenvectors of Rh).

3.2. General Sequential Design

Note that the orthogonality condition (C.1) on the pilot beam-
forming vectors may limit the channel estimation perfor-
mance. When a few dominant directions contain most of
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the channel gain [13] or the SNR is not high enough to re-
duce the channel uncertainty in the subspace spanned by
the pilot beam vectors, the system may require some spe-
cific pilot beam vectors more than once during a training
period. Hence, in this subsection, we relax the orthogonality
condition (C.1) and address the pilot design problem again.
In this case, the solution is not given nicely as in Proposi-
tion 1. To tackle the problem, we adopt a symbol-time-wise

sequential optimization approach to the Gauss-Markov block-

fading channel model to design the set of pilot beam patterns
sk ∈ Sl = {sk′ : lM + 1 ≤ k′ ≤ lM + Mp}. That is,
we convert the time-invariant block Gauss-Markov model to
a time-varying symbol-wise Gauss-Markov model, and ap-
ply symbol-time-wise Kalman filtering to this time-varying
symbol-wise Gauss-Markov model.

Note that the channel is not varying during a slot, and
we have symbol-time-wise measurement updates during the

training period of the slot. Define ĥl
k

∆
=E{hl|y(k)p }, where

y(k)p = {yk′ |k′ ≤ k, k′ ∈ Ip}, and Pl
k = E

{(

hl − ĥl
k

)(

hl −
ĥl
k

)H |y(k)p

}

. Then, the measurement update steps (4) and (5)
can be rewritten as

ĥl
k = ĥl

k−1 +Kk(yk − sHk ĥl
k−1), (10)

Pl
k = Pl

k−1 −Kks
H
k Pl

k−1, (11)

lM + 1 ≤ k ≤ lM + Mp, where ĥl
lM = ĥl|l−1, Pl

lM =
Pl|l−1, and Kk = Pl

k−1sk(s
H
k Pl

k−1sk + σ2
w)

−1. At the end
of the slot, the channel is updated and thus a prediction step
is applied:

ĥl+1|l = aĥl
Mp

and Pl+1|l = a2Pl
Mp

+ (1− a2)Rh. (12)

Now the greedy sequential pilot design to this symbol-time-
wise model is stated as follows.

Problem 2 For each slot time l starting from 0, given Sl′ for

all pilot symbol time l′ < l, design Sl such that

min
sk

tr
(

Pl
k

)

, s.t. ∥sk∥22 = ρp, sk ∈ Sl. (13)

The solution to Problem 2 is given by the following proposi-
tion.

Proposition 2 Given all previous pilot signals Sl′ (l′ < l),
the pilot beam pattern sk ∈ Sl minimizing tr(Pl

k) is given by

a scaled dominant eigenvector of Pl
k−1.

The proof is omitted since it can be shown similarly as
in the symbol-time-wise, time-invariant case in [1]. Further-
more, employing the sequentially optimal Sl, it can be shown
that Pl

k, Pl
k−1 , Rh, all have the same common set of eigen-

vectors. That is, we can represent Pl
k−1 = UΛl

k−1U
H ,

where Rh = UΛ0U
H is the ED of Rh, and Λl

k−1 is a diag-
onal matrix composed of the eigenvalues of Pl

k−1. Note that
if the selected eigenvectors for lM + 1 ≤ k ≤ lM + Mp

are all different, then the obtained Sl satisfies the orthogonal
condition because UHU = INt

.

Remark 1 By Proposition 2 combined with the simultaneous

diagonalizablity, the measurement update step (11) during the

training period can be rewritten as

Pl
k = UΛl

k−1U
H −U

(

ρpλ2
k−1,i

ρpλk−1,i + σ2
w

eie
T
i

)

UH , (14)

where Λl
k−1 = diag(λk−1,1, · · · ,λk−1,Nt

) and ei is the i-th
unit vector for i = argmaxj λk−1,j . The optimal sk is given

by sk =
√
ρpui by Proposition 2, where U = [u1 · · ·uNt

].
The prediction step (12) at k = lM +M can be rewritten as

Pl+1|l = a2UΛl
Mp

UH + (1− a2)Rh. (15)

Summarizing the above result, we provide the symbol-
time-wise sequentially optimal pilot design method for the
Gauss-Markov block-fading channel model that removes the
orthogonality limitation of the design in Proposition 1, and
thus allows the same pilot pattern to be used more than once
during a training period, depending on the channel statistics
(as in Algorithm 1). In addition, the proposed design can be
leveraged to reduce the complexity of a feedback-based pi-
lot beam pattern design [7, 19] with some modified assump-
tions. That is, the proposed method requires the system to
store only Nt eigenvectors of Rh, instead of all possible Mp

combinations of all eigenvectors of Rh. Thus, the receiver
feeds back the index of the selected pilot beam pattern among
{1, · · · , Nt} for the next pilot symbol time. Although we
only consider the MISO case, the result derived here can be
extended to the MIMO case by using approaches similar to
those in [2]. Furthermore, by the Toeplitz distribution the-
orem (TDT) [20, 21], the large Toeplitz covariance matrix
Rh can be eigen-decomposed by a discrete Fourier transform
(DFT) matrix. As a result, the pilot beam patterns are approx-
imated by DFT vectors without much loss in performance and
simulation will be presented in Section 4.

Algorithm 1 Sequentially Optimal Pilot Beam Pattern Design

Require: Perform the ED of Rh = UΛ0U
H . Store λ0 =

diag(Λ0) and U = [u1 · · ·uNt
].

λ = λ0 where λ = [λ1, · · · ,λNt
]T

while l = 0, 1, · · · do
for m = 1 to M do

if m ≤Mp then
i = argmaxj λj

sk =
√
ρpui

λi ← λiσ
2

w

ρpλi+σ2
w

(See (14).)

end if

end for
λ← a2λ+ (1− a2)λ0 (See (15).)

end while

4. NUMERICAL RESULTS

In this section, we provide some numerical results to eval-
uate the performance of the proposed algorithm. We adopt
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Fig. 1. NMSE performance comparison for Mp = 3, r = 0.9

2.5GHz carrier frequency and the terminal velocity v =
3km/h with Ts = 0.5ms.1 The channel estimation perfor-
mance was measured by the normalized mean square error
(NMSE), i.e., 1

tr(Rh)
tr(PlM+Mp |lM+Mp

) at the end of the

l-th training period. The pilot symbol SNR was defined as
ρp/σ2

w with ρp = 1 and we assumed that the pilot-to-data
power ratio is the same. The received SNR was defined as
|sHk ĥk|k|2/(sHk Pk|ksk + σ2

w).
First, we considered the uniform correlation model [19,

23], given by [Rh]i,j = (1 − r)δij + r, where r is the corre-
lation coefficient between two adjacent antenna elements and
δij is the Kronecker delta. Fig. 1 shows the performance of
the proposed methods for a uniform linear array (ULA) with
Nt = 32. Since this correlated channel is mainly distributed
around some dominant directions, Algorithm 1 benefits by re-
laxing the orthogonality condition and using a suitable pilot
beam pattern more than once in a slot and thus enhances the
MSE performance especially at low SNR.

Next, we considered the one-ring channel model (which
models typical cellular configurations [12, 13]) for a 10× 25

1For Jakes’ model [22], a = J0(2πfDTs) where J0(·) is the zero-order
Bessel function, fD is the Doppler frequency shift, and Ts is the slot interval.

uniform planar array (UPA).2 We compared the performance
of the proposed method to several methods [24, 18] and the
results are plotted in Fig. 2. Under optimal Kalman filter-
ing, we considered a round-robin selection for the orthogo-
nal and random pilot patterns that were initialized at the start
of the simulation. Fig. 2(a) shows that the proposed method
learns the channel state well, and also provides a considerable
(received) SNR gain. Note that the DFT/TDT-based method
yields almost the same performance. Orthogonal and random
pilot beam patterns are ineffective because such patterns span
all of the Nt-dimensional space instead of capturing the dom-
inant channel uncertainty in space. The fixed Mp dominant
eigenvectors of Rh [18] can only minimize the channel MSE
along the Mp eigen-directions, and thus the corresponding
channel estimation performance is saturated quickly because
it leaves the Nt-Mp eigen-directions intact. (See [2] for a de-
tailed discussion.)

5. CONCLUSIONS

We have considered the problem of pilot beam pattern de-
sign for massive MIMO systems under the Gauss-Markov
block-fading channel model and have proposed new meth-
ods for pilot beam pattern design by exploiting channel statis-
tics and the structure of Kalman filtering with and without
an orthogonality condition on the pilot beam vectors within
a training period. In the case when an orthogonal condition
is imposed on the pilot signals within a training period, the
sequentially optimal beam patterns at each training period are
given by the dominant eigenvectors of the Kalman prediction
error covariance matrix. The proposed algorithm based on a
symbol-time-wise sequential approach relaxing the orthogo-
nality condition can further improve the channel estimation
performance in highly spatially correlated channels, where a
few dominant directions contain the most of the channel gain.

2See [13, 2] for more details about the path loss and the channel model.
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